
Chapter 7
Planning with applications to quests and story

Yun-Gyung Cheong, Mark O. Riedl, Byung-Chull Bae, and Mark J. Nelson

Abstract Most games include some form of narrative. Like other aspects of game
content, stories can be generated. In this chapter, we discuss methods for generating
stories, mostly using planning algorithms. Algorithms that search in plan space and
those that search in state space can both be useful here. We also present a method
for generating stories and corresponding game worlds together.

7.1 Stories in games

Games often have storylines. In some games, they are short backstories, serving to
set up the action. The first-person shooter game Doom’s storyline, about a military
science experiment that accidentally opens a portal to hell, is perhaps the canonical
example of this kind of story: its main purpose is to set the mood and general theme
of the game, and motivate why the player is navigating levels and shooting demons.
The level progression and game mechanics have very little to do with the storyline
after the game starts. In other games, the storyline structures the progression of the
game more pervasively, providing a narrative arc within which the gameplay takes
place. The Final Fantasy games are a prominent representative of this style of game
storyline.

Since the theme of this book is to procedurally generate anything that goes into
a game, it will not surprise the reader that we will now look at procedurally gen-
erating game storylines. As with procedural generation of game rules, discussed in
the previous chapter, procedural generation of storylines is somewhat different from
generation of other kinds of procedural content, because storylines are an unusual
kind of content. They often intertwine pervasively with gameplay, and their role in
a game can depend heavily on a game’s genre and mechanics.

A common way of integrating a game’s storyline with its gameplay, especially
in adventure games and role-playing games, is the quest [23, 1]. In a quest, a player
is given something to do in the game world, which usually is both motivated by the

123



124 Yun-Gyung Cheong, Mark O. Riedl, Byung-Chull Bae, and Mark J. Nelson

current state of the storyline, and upon completion will advance it in some way. For
example, the player may be tasked with retrieving an item, helping an NPC, defeat-
ing a monster, or transporting some goods to another town. Some games (especially
RPGs) may be structured as one large quest, broken down into smaller sub-quests
that interleave gameplay and story progression.

There are several reasons a game designer might want to procedurally generate
game stories, beyond the general arguments for procedural content generation dis-
cussed in Chapter 1. One reason is that procedurally generated game worlds can
lack meaning or motivation to the player, unless they are tied into the game story by
procedurally generating relevant parts of the story along with the worlds. As Ash-
more and Nitsche [2] argue, “without context and goals, the generated behaviours,
graphics, and game spaces run the danger of becoming insubstantial and tedious.”
A second reason is that proceduralizing quests can make them truly playable. Sul-
livan et al. [21] note that computer RPGs often have a particularly degenerate form
of quest, “generally structured as a list of tasks or milestones,” rather than open-
ended goals the player can creatively satisfy. Table-top RPGs have more complex
and open-ended quests, since in those games, quests can be dynamically gener-
ated and adapted during gameplay by the human game-master, rather than being
prewritten. Procedural quest generation gives a way to bring that flexibility back
into videogame quests.

7.2 Procedural story generation via planning

One way to think about procedurally generating stories is to consider them to be
a planning problem. In artificial intelligence, planning algorithms search for se-
quences of actions that satisfy a goal. A robot, for example, plans out the series of
actuator movements necessary to pick up an object and carry it somewhere.

What are the sequences of actions for a story, and what is the goal? There are
a number of ways to answer those questions, and researchers on procedural story
generation started looking at them in the 1970s—at the time, generating purely text-
based short stories, not game stories.

We could answer that a story is a sequence of events in a story world (in our case,
a game world)—a sequence that eventually leads, through the chain of events, to the
story’s ending. Therefore we generate stories by simulating a fictional work: to tell
a story, we first simulate what happens as characters move around and take actions
in the story world, and then the story consists of simply recounting the events that
happened. One of the first influential story-generation systems, Tale-Spin [14], takes
this approach.

Generating stories by simulating a story world does have some shortcomings. It
does not take into account what makes a story—particularly an interesting story—
different from simply a log of events. Stories are carefully crafted by authors to
have a certain pace, dramatic tension, foreshadowing, a narrative arc, etc., whereas
a simulation of a day in the life of a virtual character does not necessarily have any



7 Planning with applications to quests and story 125

of these features of a good story, except by accident. To solve that problem, we
can look at the story-planning problem from the perspective of an author writing
the story, rather than from the perspective of a protagonist taking actions in the
story world. Story planning then becomes a problem of putting together a narrative
sequence that fits the author’s goals [6]. Universe [12] and Minstrel [25] are two
well-known story generators that take this author-oriented approach.

For videogame stories, planning from the perspective of an author can become a
more problematic concept, because players act in the game’s story world, rather than
in the author’s head. Procedurally generating stories using an approach more like
Tale-Spin, that takes place within the story world, can be more straightforward, since
it has the advantage of talking about the same place and events that the player will
be interacting with. On the other hand, we may still want a narrative arc and other
author-level goals, which may lead to hybrid systems that plan author-level goals
on top of story-world events [13, 19]. Many questions remain open, so procedural
story generation in games is an active area of research.

In the rest of this chapter, we’ll introduce the concepts and algorithms behind
story planning, and walk through examples of using planning to generate interactive
stories.

7.3 Planning as search through plan space

Planning can be viewed as a process that searches through a space of potential so-
lutions to find a solution to a given problem, when knowledge about the problem
domain is given. The problem is called a planning problem and consists of the goal
state and the initial state. A solution to a planning problem is a plan, which contains
a sequence of actions. A plan is sound if it reaches the goal state starting from the
initial state when executed. Domain knowledge is represented as a library of plan
operators, where each operator consists of a set of preconditions and a set of effects.
Preconditions are just those conditions that must be established for the operator to
be executed, and effects are just those conditions that are updated by the execution
of the plan operator.

A space of potential solutions can be represented in two different ways: either as
a state space or as a plan space. A state space can in turn be represented as a tree
that consists of nodes and arcs, where a node represents a state and an arc repre-
sents a state transition by the application of an operator. The root node of the space
represents the initial state when the algorithm is forward progression search while
the root node represents the goal state when the algorithm is backward regression
search.

Here is the pseudocode description of a state space algorithm:

1: construct the root node as the initial state
2: select a non-terminal node

if non-terminal nodes are not found, return failure and exit
if this is the goal state, return path from the



126 Yun-Gyung Cheong, Mark O. Riedl, Byung-Chull Bae, and Mark J. Nelson

initial to current state as solution and exit
3: select an applicable operator

(its preconditions are true in forward progression search and
its effects are true in backward regression search)

if no such operators, mark node as terminal and goto 2
4: construct child nodes by applying the operator

if the number of nodes in the graph exceeds a predefined
maximum number of search nodes, return failure and exit

5: go to step 2

A plan space (see Figure 7.1) can be represented as a tree, which consists of
nodes and arcs. Unlike a state space, however, the root node of the tree specifies
the planning problem, the initial state and the goal state. Each leaf node represents
a complete plan (i.e. solution) which can achieve the goal state from a given initial
state when executed or a partial plan that cannot be refined any more due to incon-
sistencies in the plan. Internal nodes represent partial plans that contain flaws. The
search process can be viewed as refining the parent node into a plan that fixes a flaw
of the parent node [10]. A flaw in a plan can be an open precondition that has not
been established by a prior plan step or a threat that can undo an established causal
relationship in the plan.

Here is the pseudocode description of a partial-order planning algorithm:

1: construct the root node as the planning problem
2: select a non-terminal node (based on its heuristic value)
3: select a flaw in the node

if no flaw is found, return the node as a solution and exit
4: construct children nodes by repairing the flaw

if the flaw is an open precondition, either
a) establish a causal link from an existing plan step, or
b) add new plan step whose effects imply the precondition

if the flaw is a threat, either
a) add a temporal ordering constraint

so that the threatened causal link is not disrupted, or
b) add a binding constraint to separate the threatening

step from steps involved in the threatened causal link.
if the flaw is not repairable, mark the node as terminal

and go to 2
if the number of nodes in the graph exceeds a predefined

maximum number of search nodes, return failure and exit
5: go to step 2

The complete plans generated by a state-space search algorithm are total-order
plans. This means that they specify the temporal ordering constraint of every step in
the plan. A partial-order plan, by contrast, specifies only those temporal orderings
that must be established to resolve threats. For instance, imagine that you are given
the goal of purchasing milk and bread in a grocery store. The goal can be success-
fully fulfilled without worrying about which one should be purchased first. And yet,
a total-order plan specifies the order of these two purchasing actions and generates
two plans: a) to purchase milk first and then purchase bread, and b) to purchase
bread first and then purchase milk. On the other hand, a partial-order plan does not
specify the ordering constraint and defers the decision until it is necessary.



7 Planning with applications to quests and story 127

Fig. 7.1: A plan-space graph. The root node #1 represents an empty plan that con-
tains the initial and the goal step only. The initial step contains p as an effect and the
goal step contains g as its precondition. Nodes #2 and #3 are partial plans that repair
the open precondition g by adding two different plan steps S1 and S2. Node #4 is a
complete plan repairing an open precondition p by establishing a causal link from
the initial step. The search could terminate here, if only one solution is needed. To
find all solutions, the refinement search process continues from #3, generating more
children (#5, #6, #7). Node #7 is marked as terminal, because there are no available
operators that can repair the open precondition c. Search for additional solutions
then continues from #6 (not shown)

In a plan-space search, the search process can be guided by a heuristic function
which estimates the length of the optimal complete plan, based on the number of
plan steps and the number of flaws that the current plan contains.

While both state-space search and plan-space search algorithms have advantages,
plan-space search planners have been favoured in creating stories, because their rep-
resentations are similar to the mental structure that humans construct when reading
a story [24] and their search processes resemble the way humans reason to find
a solution [17]. Furthermore, the causal relationships encoded in the plan struc-
ture allow further investigation of computational models of narrative, such as story



128 Yun-Gyung Cheong, Mark O. Riedl, Byung-Chull Bae, and Mark J. Nelson

summarization and affect creation [3, 5]. However, partial-order planning (POP) is
computationally expensive because its space grows exponentially as the length of
the plan increases. Therefore, it has not been used in many practical applications.

Hierarchical task networks (HTNs) [20, 22] represent plans hierarchically by
recursively splitting composite non-primitive actions into smaller primitive actions.
Figure 7.2 shows HTN action schemas that decompose abstract tasks into primitive
tasks. HTN can be used to generate a story by generating character behaviours.

Fig. 7.2: An HTN action schema. Ovals are abstract operators, and rectangles are
primitive operators. This example encodes an NPC activity that is carried out over
an hour of game-world time. The NPC can sleep if tired or perform a random task.
It may want to Get Food if hungry. Get Food is an abstract task is decomposed into
primitive tasks such as Hunt and Learn Hunting [11]

HTN planning searches in plan-space for a suitable plan. A simple HTN algo-
rithm is described below.

1: construct the root node with an abstract operator
2: select an abstract operator to expand

if no abstract operators are found and
all the preconditions are satisfied,
return the network as a solution and exit

3: select an action schema whose preconditions are true
if no such methods are found, return failure

4: decompose the abstract operator into sub-tasks
as encoded in the action schema

5: go to step 2



7 Planning with applications to quests and story 129

7.4 Domain model

A domain model is the library of plan operator templates that encode knowledge in
a particular domain (in this chapter, a story world). Various formal languages have
been proposed to describe planning problems in terms of states, actions, and goals.
This section focuses on two planning languages, STRIPS and ADL, which have
been widely used for classical planners.

Before we get to the formalism, let us take an example. Imagine that a character
in a story, named Alex, is on the rooftop of a building. His goal is to be on the
ground level of the building without being injured. Alex can think of several plans
immediately. For instance, Alex can take an elevator (Plan 1), can walk down the
stairs (Plan 2), or can jump from the roof (Plan 3). Making the decision requires
considering constraints such as his capability (e.g. Alex could be an old man having
mobility problems), the building’s facilities (e.g. elevators), his preference (e.g. Alex
always prefers walking down the stairs for exercise), etc. If the building has an
elevator and Alex wants to go to the ground level quickly, Plan 1 would be suitable.
Alex may choose Plan 2 if there is no lift in the building. Alex may take Plan 3 if he
has a parachute with him and a serial killer with a knife is running toward him.

The goal of planning algorithms is to formalize making these kinds of decisions:
finding plans that maximise goals in the face of various conditions, constraints, and
preferences. Thus, it is important to select a formal language that best expresses the
problem domain.

7.4.1 STRIPS-style planning representation

STRIPS, introduced by Fikes and Nilson in 1971 [7], is the forerunner of many
modern formal languages in planning. In STRIPS-style plans, a state is represented
by either a propositional literal or a first-order literal where literals are ground (i.e.
variable-free) and function-free. A propositional literal states a proposition which
can be true or false (e.g. p, q, PoorButler). A first-order logic literal states a relation
over objects that can be true or false (e.g. At(Butler,House), Lord(Higginbotham)).

In STRIPS-style representations, we make a closed-world assumption—any con-
ditions that are not explicitly specified are considered false. Thus only positive lit-
erals are used for the description of initial states, goal states, and preconditions. The
effects of actions may include negative literals to negate particular conditions. A
STRIPS-style formalization of the scenario where Alex is choosing how to exit a
building (discussed above) can look like this:

• Initial state representation
At(Alex,Roo f top) ∧ Alive(Alex) ∧ Walkable(Rooftop, Ground) ∧ Person(Alex)
∧ Place(Rooftop) ∧ Place(Ground)

• Goal State representation
At(Alex, Ground) ∧ Alive(Alex)



130 Yun-Gyung Cheong, Mark O. Riedl, Byung-Chull Bae, and Mark J. Nelson

• Action representation
Action(WalkStairs (p, from, to))
PRECONDITION: At(p, from) ∧ Walkable(from, to) ∧ Person(p) ∧ Place(from)
∧ Place(to)
EFFECT: ¬At(p, from) ∧ At(p, to)

In the above example, the initial state is represented by the conjunction of six
first-order logic predicates. The goal state is represented by the conjunction of
two predicates in the same manner. In the action representation, the action named
WalkStairs has three variable parameters (p, f rom, to); the action’s preconditions
are represented by the conjunction of five predicates; and the action’s effects are
denoted by the conjunction of two predicates including a negative literal. The action
WalkStairs will be applicable and executed only when its preconditions are satis-
fied. After execution, the condition At(p, f rom) will be deleted from the current
state of the world and the condition At(p, to) will be added to the current state of
the world.

7.4.2 ADL, the Action Description Language

STRIPS is an efficient representation language for modelling states of the world. Us-
ing relatively simple logic descriptions (e.g. a conjunction of positive and function-
free literals), it can convert the states and actions of a particular domain in the real
world into corresponding abstract planning problems. This simplicity, however, can
be a limitation in complex planning problems. Therefore many successor planning
representations extend it with more features. One popular such extended language
is the Action Description Language (ADL), which adds a number of additional fea-
tures [16]:

• Both positive and negative literals are allowed in state descriptions, assuming
open-world semantics (that is, any unspecified conditions are considered un-
known, not false by default).

• Quantified variables and the combination of conjunction and disjunction are al-
lowed in the goal state description.

• Conditional effects are allowed.
• Equality and non-equality predicates (e.g. (from 6= to)) and typed variables (e.g.

(p: Person), (from: Location)) are supported.

An ADL-style representation of the previous example is shown below:

• Initial state representation
At(Alex, Rooftop) ∧ ¬Dead(Alex) ∧ Walkable(Rooftop, Ground) ∧ Person(Alex)
∧ Place(Rooftop)∧ Place(Ground)∧Wearing(Alex, Parachute)∧¬Injured(Alex)
∧ Thing(Parachute)

• Goal State representation
At(Alex, Ground) ∧ ¬(Dead(Alex) ∨ Injured(Alex))



7 Planning with applications to quests and story 131

• Action representation
Action(WalkStairs(p: Person, from: Place, to: Place))
PRECONDITION: At(p, from) ∧ (from 6= to) ∧ (Walkable(from, to))
EFFECT: ¬At(p, from) ∧ At(p, to)
Action(JumpFromRooftop(p: Person, from: Place, to: Place, sth:Thing))
PRECONDITION: At(p, from) ∧ (from 6= to) ∧ Emergent(p)
EFFECT: ¬At(p, from) ∧ At(p, to) ∧ (when Wearing(p, Parachute): ¬Dead(p))

7.5 Planning a story

A story can be represented as a partial-order plan, a tuple < S,O,C > where

• S is a series of events (i.e. instantiated plan operators),
• O is temporal ordering information represented as (s1 ¡ s2) where s1 precedes s2,
• C is a list of causal links where a causal link is represented by (s, t; c) notating a

plan step s establishes c, a precondition of a step t.

Figure 7.3 illustrates a story that consists of four events that fulfills the goal
dead(Lord) starting from the initial state have(Butler,Wine)∧ have(Butler,Poison)
∧ serving(Butler,Lord). The textual description of the plan can be read as: (1) But-
ler puts poison in wine. (2) Butler carries wine to Lord Higginbotham. (3) Lord
Higginbotham drinks wine. (4) Lord Higginbotham falls down. (The original story
is from [4].)

This plan seems reasonable as a story. But is it an optimal plan that has the
minimum number of steps? What if the butler gave the poison to the lord instead?
Then, the plan would consist of three steps: 1) The butler carries the poison, 2) The
lord drinks the poison, 3) The lord falls down.

As you may have sensed already, the new plan is logically sound but does not
make a good story. Why would the lord cooperate with this plan? This is one prob-
lem that can arise with author-centric story generation, which may ignore indi-
vidual characters’ plausible intentions. An alternative approach, character-centric
story generation, lets every character plan his/her own actions. This is more likely
to produce logically consistent sets of actions, but we cannot necessarily expect that
interesting stories will emerge from purely character-centric planning: A tellable sit-
uation rarely arises without the help of authorial goals. To tackle this issue, Riedl and
Young proposed an intent-driven planning algorithm to balance the author-centric
approach and character-centric approaches to story generation [19].

7.6 Generating game worlds and stories together

Many computer games engage players through interleaved periods of story play and
open-ended play. Story play encompasses the activities of the players that promote



132 Yun-Gyung Cheong, Mark O. Riedl, Byung-Chull Bae, and Mark J. Nelson

Fig. 7.3: The Butler story. A rectangle denotes an event and an arrow denotes a
causal link where the event in the source establishes a condition for the event in
the destination. The temporal ordering proceeds from the top to the bottom. Story
originally from [4]

the progression of the game world through a narrative sequence toward a desired
conclusion. As laid out in this chapter, a story can be represented as a partially or-
dered plan of actions that, when executed, transform the world progressively closer
to a desired conclusion, represented by the goal situation. Open-ended play encom-
passes player activities that do not progress (nor inhibit) the story plan. Examples of
open-ended play activities include exploring the spatial environment, encountering
random enemies, and finding treasure or items.

This section concerns itself with the generation of playable game experiences
including both story play and open-ended play. Players expect to be immersed in
a game world, a spatial environment encompassing all locations relevant to story
play and open-ended play, and inhabited by the player character and all other non-
player characters. Both story play and open-ended play are often tied to the spatial
environment. Unfortunately, the use of a story plan generator does not necessarily
result in a playable experience without being tied to a spatial environment. In the
case that a game world does not exist that suits the purposes of an automatically
generated story plan, the game world may be automatically generated.

To motivate the need for game world generation, consider the fully ordered plan
in Table 7.1. The plan involves a player character, the Paladin, performing a series
of tasks to gain the King’s trust, learn about a treasure cave, and escape a trap. Each
action in the plan establishes a number of world conditions necessary for subsequent



7 Planning with applications to quests and story 133

Table 7.1: Example plan with event locations

1. Take (paladin, water-bucket, palace)
2. Kill (paladin, baba-yaga, water-bucket, graveyard1)
3. Drop (baba-yaga, ruby-slippers, graveyard1)
4. Take (paladin, shoes, graveyard1)
5. Gain-Trust (paladin, king-alfred, shoes, palace)
6. Tell-About (king-alfred, treasure, treasure-cave, paladin)
7. Take (paladin, treasure, treasure-cave)
8. Trap-Closes (paladin, treasure-cave)
9. Solve-Puzzle (paladin, treasure-cave)
10. Trap-Opens (paladin, treasure-cave)

actions to occur. For example, the Witch will drop her shoes only once dead, and
the King will trust the Paladin once he is presented with the shoes of the Witch. A
story plan only provides the essential steps to progress toward a goal situation, but
does not reason about player activities that do not otherwise impact the progression
of the story.

The domain model abstracts away much of the moment-to-moment activity of the
player and NPCs in order to focus on the aspects of the world that are most crucial
for story progression. Game play, however, is not always a sequence of discrete
operations. For example, solving a puzzle may require many levers to be triggered
in the right sequence. For the purposes of this chapter, we will refer to operations
in a story plan as events to highlight their abstract nature. Events are temporally
extended; each event can take a continuous duration of time, and there may be large
durations of time between events. The plan also does not account for opportunities
for open-ended play between events. For example, where is the graveyard relative
to the castle, how long does it take to travel that distance, and what might the player
see or experience along the way that is not directly relevant to the story plan?

If the game world is a given—i.e. there is a fixed world with a number of locations
and NPCs—then there is a mapping of story events in the plan to virtual locations
in the game world. For example, the game world for Table 7.1 requires a graveyard,
a castle, and a treasure cave. However, due to the nature of automatically generated
story plans, it is not always feasible to have a single fixed game world that meets
the requirements of a story plan: locations may be missing, there may be too many
irrelevant locations, or locations may need to be rearranged to make a more coherent
and sensible flow. In the next section, we describe a technique to automatically
generate a playable game world based on a story plan.

7.6.1 From story to space: Game world generation

Recalling that games often interleave plot points and open-ended game play, the
game world to be generated must ensure a coherent sequence of events are encoun-
tered in the world. The problem can be specified as follows: given a list of events



134 Yun-Gyung Cheong, Mark O. Riedl, Byung-Chull Bae, and Mark J. Nelson

that reference locations of known types, generate a game world that allows a lin-
ear progression through the events. To map from story to space, we will utilize a
metaphor of islands and bridges. Islands are areas in the spatial environment where
events occur. Bridges are areas of the world between islands where open-ended
game play occurs. Bridges can branch, meaning there can be areas that the player
does not necessarily need to visit in the course of the story. The length of bridges
and the branching factor of bridges are parameters that can be set by the designer or
dictated by a player model. A game world is generated in a three-stage pipeline in
which (1) a story plan is parsed for location information referenced by events, (2)
an intermediate, abstract representation of the navigable space is generated, and (3)
the graphical visualization of the navigable space is realized.

Table 7.2: A portion of the initial state declaration for a planning domain

Hero (paladin) Thing (water-bucket) Type (palace, castle)
NPC (baba-yaga) Thing (treasure) Type (graveyard1, graveyard)
NPC (king-alfred) Thing (ruby-slippers) Type (treasure-cave, cave)
Place (palace) Evil (baba-yaga) Type (water-bucket, bucket)
Place (graveyard1) Type (baba-yaga, witch) Type (ruby-slippers, shoes)
Place (treasure-cave) Type (king-alfred, king) Type (treasure, gold)

First, the generated story plan is parsed to extract a sequence of locations, each
of which becomes an island. The story plan must be fully ordered to generate such
a sequence (any partially ordered plan can be converted into a fully ordered plan).
Each event in the story plan must be associated with a location. For example, in the
story plan in Table 7.1, events occur at places referenced by the symbols palace,
graveyard1, and treasure-cave. Each referenced location must have a type. This
information is often found in the initial state declaration of the planning domain.
Table 7.2 shows a portion of the initial state for the domain used to generate the
example story plan. Thus the example story plan plays out in three locations: a
castle (events 1, 5, and 6), a graveyard (events 2 through 4), and a cave (events 7
through 10).

The next stage is to generate an intermediate representation of the game world as
a graph of location types called a space tree. A space tree is a discrete data structure
that indicates how big the game world will be, how many unique locations there are,
and which locations are adjacent to each other. Figure 7.4 shows an example of a
space tree in which the nodes corresponding to island locations—where story plan
events are to occur—are highlighted in bold and the rest of the nodes comprise the
bridges.

The planning domain does not provide enough information to tell us what types
of locations should be used for the bridges. We require an addition knowledge struc-
ture, called an environment transition graph. An environment transition graph is a
data structure that captures the game designer’s beliefs about good environment type
transitions. Each node in an environment transition graph is a possible location type



7 Planning with applications to quests and story 135

cave

castle
forest

forest

swamp

swamp

grave-
yard

swamp
forest

forest

mountain

mountain

Fig. 7.4: An example space tree. Islands are marked with bold lines. Adapted
from [8]

castle forest

grave-
yard

mountain
desert

swamp0.3

0.6

0.2

0.4 0.4

0.2

0.1

0.10.2

0.5

cave

0.2

0.2
0.1

1.0

0.1

0.1 0.5
0.3

0.2

0.2
0.8

0.3

Fig. 7.5: An environment transition graph. Adapted from [8]

and edges indicate non-zero probability of transitioning from one location type to
another. Figure 7.5 shows an example of an environment transition graph.

Space-tree generation can utilize any optimisation algorithm to find a space tree
that meets the evaluation criteria. See Chapter 2 for the general search-based ap-
proach to procedural content generation, and [8] for specific implementation details.
The evaluation criteria are:

• Whether bridges (nodes in the space tree between islands) have the preferred
length.

• Whether bridges have the preferred branching factor.
• Whether the length of side paths—branch nodes that are not directly between

two islands—matches the preferred side-path length.
• How closely environment type transitions between adjacent nodes match the en-

vironment transition graph probabilities.

These evaluation criteria make use of parameters set by the designer. Other evalua-
tion criteria may be used as well.

Once the space tree has been generated via a search-based optimisation process,
the third stage is to realize the game world graphically. The space tree gives us
an abstract representation of this game world but doesn’t tell us what each location
should look like. Where should art assets be placed spatially to create the appearance
of a forest, town, or graveyard, etc?



136 Yun-Gyung Cheong, Mark O. Riedl, Byung-Chull Bae, and Mark J. Nelson

cave

castle forest

forestswamp

swamp

grave-
yard

swamp forest

forest

mountain

mountain

Fig. 7.6: A space tree mapped to a grid. Adapted from [8]

We describe a graphical realization process that creates a 2D, top-down, tile-
based, graphical visualization of a game world described by a space tree. Starting
with a grid of empty tiles, we will first map the space tree to the 2D grid and then
choose tiles for each cell in the grid. If the grid is mworld× nworld tiles, then each
mscreen×nscreen tiles is the number of tiles that can be displayed on the screen at any
one time. Each node in the space tree will be mapped to a mlocation× nlocation grid
of screens. In Figure 7.6, the world is 340× 160 tiles, each screen is 34× 16 tiles,
and each location encompasses a 3× 3 grid of screens (only a portion is shown).
The mapping of space tree to grid is as follows. Use a depth-first traversal of the
space tree, placing each child adjacent to its parent on the grid. In order to prevent
an algorithmic bias toward growing the world in a certain direction (e.g. from left
to right), one can randomize the order of cardinal directions in which it attempts to
place each child. To minimise the likelihood that nodes will be mapped to the same
portion of the grid, one can constrain the space tree such that nodes have no more
than two children, for a total of three adjacent nodes. Backtrack if necessary. If there
is no mapping solution, discard the space tree and resume search for the next best
space tree.

Once each node in the space tree has been assigned a region on the grid, the mod-
ule begins graphical instantiation of the world. Each node from the space tree has
an environment type, which determines what decorations will be placed. Decora-
tions are graphical assets that overlay tiles and visually depict the environment type.
For a 2D tile-based realization of a game world, decorations are sprites that depict
scenery found in different environment types. A forest environment has decorations
consisting of grass, trees, and bushes, while a town has decorations that look like
buildings, castle walls, and street paving stones.

But how does the system know where to place each decoration? This knowledge
is also not present in the domain model, and a third type of external knowledge is
necessary. Each environment type is associated with a function that maps decora-
tions to a probability distribution over XY tile coordinates. We have identified two
types of mapping functions.

A Gaussian distribution defines the dispersement of decorations around the cen-
ter point of a location such that decorations are placed more densely around the



7 Planning with applications to quests and story 137

Fig. 7.7: A forest adjacent to a swamp, both with Gaussian distributions, resulting
in a blended transition. Adapted from [8]

center point of each location. The advantage of a Gaussian distribution is that deco-
rations can be placed in adjacent locations, creating the appearance that one location
blends into the next, as in Figure 7.7.

A custom distribution is an arbitrary, designer-specified function that returns the
probability of placing a decoration at any XY coordinate. Figure 7.8 shows the cus-
tom distribution for a town location type such that buildings are likely arranged in
grid-like city blocks, paving stones make up streets between city blocks, and guard
towers are arranged in a ring around the town perimeter.

Figure 7.9 shows an example of a complete game world with three islands ex-
tracted from Table 7.1.

7.6.2 From story to time: Story plan execution

Once the space in which the story will unfold has been generated, there are two ad-
ditional issues that must be addressed: (a) the world must be populated with NPCs,
and (b) the NPCs must act out the story, which is not known prior to execution.
Population of the world by NPCs is a simple process of parsing the story plan for
references to NPCs and instantiating sprites (based on NPC types) in the locations
in which they are first required to participate in an event. Because of the temporal
extension of events, NPCs must elaborate on events, including engaging in com-
bat, engaging in dialogue, setting up and triggering traps (the world itself can be an
NPC), etc. Because the story and world geometry are a-priori unknown, the NPCs
must be flexible enough to elaborate on an event under a wide range of conditions
based on what events preceded the current time point and how the world is laid out.



138 Yun-Gyung Cheong, Mark O. Riedl, Byung-Chull Bae, and Mark J. Nelson

Fig. 7.8: A custom distribution for a town (above) and an example of the result
(below). Brighter colour indicates greater probability of a decoration, where red in-
dicates buildings, green indicates paving stones, and blue indicates towers. Adapted
from [8]

One solution is to pair each event with a reactive script that decomposes the
event into a number of primitive NPC behaviours. Roughly, a reactive script is an
AND-OR tree structure in which internal nodes represent abstract behaviours—
possibly joint between a number of characters—and leaf nodes represent primi-
tive, executable behaviours such as animations. Reactive script execution is a walk
of the tree implementing an event such that AND-nodes create sequences of sub-
behaviours and OR-nodes express alternative means of decomposing achieving a
behaviour, implementing if-then-else decision-making logic. Internal nodes may
implement applicability criteria (similar to preconditions) that are used to prune
sub-trees that are not supported by the state of the virtual world at execution time.
Examples of reactive script technologies include behaviour trees [9], hierarchical
finite state machines, hierarchical task networks [20] such as SHOP 2 [15], and the
ABL reactive behaviour planner [13].

Two types of reactive scripts are necessary to execute an automatically generated
story in an open-ended game world [18]: narrative directive behaviours and local au-
tonomous behaviours. Narrative directive behaviours are reactive scripts associated
with event templates in the domain model. They operate as above, decomposing
events into primitive behaviours. Narrative directive behaviours enact an event like



7 Planning with applications to quests and story 139

Fig. 7.9: Example game world generated from the islands in the plan in Table 7.1.
Adapted from [8]

a stage manager in a play; they are not associated directly with any one character,
but may control many characters at once. Local autonomous behaviours are asso-
ciated with NPC types and execute whenever an NPC is instantiated in the world
but not otherwise playing a role in an event. Local autonomous behaviours create
the appearance that NPCs have rich internal lives when they are encountered by the
player during open-ended play.

7.7 Lab exercise: Write a story domain model

The purpose of this exercise is to write a story domain model and characterize dif-
ferent planning algorithms.

1. Familiarize yourself with JSHOP2, an off-the-shelf Java implementation of the
SHOP2 HTN planner (originally written in Lisp).

• Download and install JSHOP 2.0 (http://www.cs.umd.edu/projects/shop/)
• Check out and test the sample examples included in the package

2. Write a planning problem in terms of initial state, goal state, and actions by defin-
ing two story domains (Little Red Riding Hood and The Gift of the Magi) using
either STRIPS-style or ADL-style representation. Discuss which representation
is more suitable to describe the two story-world domains and explain why.

3. Convert the above planning problems into an HTN representation suitable for
JSHOP2, and execute them. Discuss the strengths and weaknesses of HTN plan-
ning (or SHOP2 planner) as a story generation method/tool.

4. In the Butler story described in Section 7.5, suppose that the lord knows that the
wine is poisoned and only pretends to be dead, but the butler does not know that



140 Yun-Gyung Cheong, Mark O. Riedl, Byung-Chull Bae, and Mark J. Nelson

the lord knows. The new authorial goal is now represented as ¬dead(Lord) ∧
arrested(Butler). Make a complete story plan by adding additional actions (e.g.
Call−911(Lord), Arrest(Police,Butler)), states, and causal links. Do you think
that it will make the story more interesting? Why or why not?

5. Discuss the overall advantages and limitations of planning-based story genera-
tion.

6. Discuss how planning-based story-generation techniques can be effectively used
in interactive storytelling systems and games.

7.8 Summary

Most games have stories, be they backstories as in a typical shooter, or stories that
structure the game experience as in a role-playing game. Stories, too, can be seen
as content and be generated. The most common approach to generating stories is
to use some kind of planning algorithm. A planning algorithm finds a path from an
initial state to a goal state; the sequence of actions that constitute this path can then
be interpreted as a story. Among planning algorithms, there is a distinction between
plan-space search, where the algorithm searches in the space of possible plans, and
state-space search, where a plan is built up through adding new parts sequentially.
A domain model is a collection of facts about the (game) world and possible actions
that can be taken in it, which is then used by the planner to create a plan. There are
several ways of representing a domain model, such as the STRIPS and ADL lan-
guages. For stories which have an impact on gameplay, there are ways of generating
the map at the same time as the story, or the map to follow the story. Finally, search
and optimisation techniques can be used to map plot points to physical locations.

References

1. Aarseth, E.: From Hunt the Wumpus to EverQuest: Introduction to quest theory. In: Proceed-
ings of the 4th International Conference on Entertainment Computing, pp. 496–506 (2005)

2. Ashmore, C., Nitsche, M.: The quest in a generated world. In: Proceedings of the 2007 Digital
Games Research Association Conference, pp. 503–509 (2007)

3. Bae, B.C., Young, R.M.: A use of flashback and foreshadowing for surprise arousal in narrative
using a plan-based approach. In: Proceedings of the 1st Joint International Conference on
Interactive Digital Storytelling, pp. 156–167 (2008)

4. Brewer, W., Lichtenstein, E.: Event schemas, story schemas, and story grammars. In: J. Long,
A. Baddeley (eds.) Attention and Performance, vol. 9, pp. 363–379. Lawrence Erlbaum Asso-
ciates (1981)

5. Cheong, Y.G., Young, R.M.: Narrative generation for suspense: Modeling and evaluation. In:
First Joint International Conference on Interactive Digital Storytelling (2008)

6. Dehn, N.: Story generation after TALE-SPIN. In: Proceedings of the 7th International Joint
Conference on Artificial Intelligence, pp. 16–18 (1981)

7. Fikes, R.E., Nilsson, N.J.: STRIPS: A new approach to the application of theorem proving to
problem solving. Tech. Rep. 43R, SRI International (1971). SRI Project 8259



7 Planning with applications to quests and story 141

8. Hartsook, K., Zook, A., Das, S., Riedl, M.: Toward supporting storytellers with procedurally
generated game worlds. In: Proceedings of the 2011 IEEE Conference on Computational
Intelligence in Games, pp. 297–304. Seoul, South Korea (2011)

9. Isla, D.: Handling complexity in the Halo 2 AI. Presentation at the 2005 Game Developers
Conference. URL http://www.naimadgames.com/publications/gdc05/gdc05.doc

10. Kambhampati, S., Knoblock, C.A., Yang, Q.: Planning as refinement search: A unified frame-
work for evaluating the design tradeoffs in partial order planning. Artificial Intelligence 76(1-
2), 167–238 (1995)

11. Kelly, J.P., Botea, A., Koenig, S.: Offline planning with hierarchical task networks in video
games. In: Proceedings of the 4th Artificial Intelligence and Interactive Digital Entertainment
Conference, pp. 60–65 (2008)

12. Lebowitz, M.: Story-telling as planning and learning. Poetics 14(6), 483–502 (1985)
13. Mateas, M., Stern, A.: A Behavior Language: Joint action and behavior idioms. In:

H. Prendinger, M. Ishizuka (eds.) Life-like Characters: Tools, Affective Functions and Ap-
plications. Springer (2004)

14. Meehan, J.R.: The metanovel: Writing stories by computer. Ph.D. thesis, Department of Com-
puter Science, Yale University (1976)

15. Nau, D., Ilghami, O., Kuter, U., Murdock, J.W., Wu, D., Yaman, F.: SHOP2: An HTN planning
system. Journal of Artificial Intelligence Research 20, 379–404 (2003)

16. Pednault, E.P.D.: Formulating multi-agent dynamic-world problems in the classical planning
framework. In: Reasoning About Actions and Plans: Proceedings of the 1986 Workshop, pp.
47–82. Morgan Kaufmann

17. Rattermann, M.J., Spector, L., Grafman, J., Levin, H., Harward, H.: Partial and total-order
planning: evidence from normal and prefrontally damaged populations. Cognitive Science
25(6), 941–975 (2001)

18. Riedl, M.O., Stern, A., Dini, D.M., Alderman, J.M.: Dynamic experience management in
virtual worlds for entertainment, education, and training. International Transactions on System
Science and Applications 3(1), 23–42 (2008)

19. Riedl, M.O., Young, R.M.: Narrative planning: balancing plot and character. Journal of Arti-
ficial Intelligence Research 39(1), 217–268 (2010)

20. Sacerdoti, E.D.: A Structure for Plans and Behavior. Elsevier, New York (1977)
21. Sullivan, A., Mateas, M., Wardrip-Fruin, N.: Making quests playable: Choices, CRPGs, and

the Grail framework. Leonardo Electronic Almanac 17(2), 146–159 (2012)
22. Tate, A.: Generating project networks. In: Proceedings of the 1977 International Joint Con-

ference on Artificial Intelligence, pp. 888–893 (1977)
23. Tosca, S.: The quest problem in computer games. In: Proceedings of the 1st International

Conference on Technologies for Interactive Digital Storytelling and Entertainment, pp. 69–81
(2003)

24. Trabasso, T., Sperry, L.L.: Causal relatedness and importance of story events. Journal of
Memory and Language 24(5), 595 – 611 (1985)

25. Turner, S.R.: The Creative Process: A Computer Model of Storytelling and Creativity. Psy-
chology Press (1994)


