
Chapter 2
The search-based approach

Julian Togelius and Noor Shaker

Abstract Search-based procedural content generation is the use of evolutionary
computation and similar methods to generate game content. This chapter gives an
overview of this approach to PCG, and lists a number of core considerations for
developing a search-based PCG solution. In particular, we discuss how to best rep-
resent content so that the content space becomes searchable, and how to create an
evaluation function that allows for effective search. Three longer examples of using
search-based PCG to evolve content for specific games are given.

2.1 What is the search-based approach to procedural content
generation?

There are many different approaches to generating content for games. In this chap-
ter, we will introduce the search-based approach, which has been intensively in-
vestigated in academic PCG research in recent years. In search-based procedural
content generation, an evolutionary algorithm or some other stochastic search/op-
timisation algorithm is used to search for content with the desired qualities. The
basic metaphor is that of design as a search process: a good enough solution to the
design problem exists within some space of solutions, and if we keep iterating and
tweaking one or many possible solutions, keeping those changes which make the
solution(s) better and discarding those that are harmful, we will eventually arrive
at the desired solution. This metaphor has been used to describe the design process
in many different disciplines: for example, Will Wright (designer of SimCity and
The Sims) described the game design process as search in his talk at the 2005 Game
Developers Conference [30]. Others have previously described the design process
in general, and in other specialised domains such as architecture, the design process
can be conceptualised as search and implemented as a computer program [29, 2].

The core components of the search-based approach to solving a content genera-
tion problem are the following:
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• A search algorithm. This is the “engine” of a search-based method. As we will
see, often relatively simple evolutionary algorithms work well enough, though
sometimes there are substantial benefits to using more sophisticated algorithms
that take e.g. constraints into account, or that are specialised for a particular con-
tent representation.

• A content representation. This is the representation of the artefacts you want to
generate, e.g. levels, quests or winged kittens. The content representation could
be anything from an array of real numbers to a graph to a string. The content
representation defines (and thus also limits) what content can be generated, and
determines whether effective search is possible.

• One or more evaluation functions. An evaluation function is a function from an
artefact (an individual piece of content) to a number indicating the quality of the
artefact. The output of an evaluation function could indicate e.g. the playability of
a level, the intricacy of a quest or the aesthetic appeal of a winged kitten. Crafting
an evaluation function that reliably measures the aspect of game quality that it is
meant to measure is often among the hardest tasks in developing a search-based
PCG method.

This chapter will describe each of these components in turn. It will also discuss
several examples of search-based methods for generating different types of content
for different types of games.

2.2 Evolutionary search algorithms

An evolutionary algorithm is a stochastic search algorithm loosely inspired by Dar-
winian evolution through natural selection. The core idea is to keep a population of
individuals (also called chromosomes or candidate solutions), which in each gener-
ation are evaluated, and the fittest (highest evaluated) individuals get the chance to
reproduce and the least fit are removed from the population. A generation can thus
be seen as divided into selection and reproduction phases. In your backyard, a gen-
eration of newly born rabbits may be subject to selection by the hungry wolf who
eats the slowest of the litter, with the surviving rabbits being allowed to reproduce.
The next generation of rabbits is likely to, on average, be better at running from
the wolf. Similarly, in a search-based PCG implementation, a generation of strat-
egy game units might be subject to selection by an evaluation function that grades
them based on how complementary they are, and then mixed with each other (re-
combination or crossover) or copied with small random changes (mutation). The
next generation of strategy game units is likely to, on average, be more complemen-
tary. It is important to note that this process works even when the initial generation
consists of randomly generated individuals which are all very unfit for the purpose;
some individuals will be less worthless than others, and a well-designed evaluation
function will reflect these differences.

To make matters more concrete, let us describe a simple but fully usable evolu-
tionary algorithm, the µ + λ evolution strategy (ES). The parameter µ represents
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the size of the part of the population that is kept between generations, the elite;
the parameter λ represents the size of the part of the population that is generated
through reproduction in each generation. For simplicity, imagine that µ = λ = 50
while reading the following description.

1. Initialise the population of µ +λ individuals. The individuals could be randomly
generated, or include some individuals that were hand-designed or the result of
previous evolutionary runs.

2. Shuffle the population (permute it randomly). This phase is optional but helps in
escaping loss-of-gradient situations.

3. Evaluate all individuals with the evaluation function, or some combination of
several evaluation functions, so that each individual is assigned a single numeric
value indicating its fitness.

4. Sort the population in order of ascending fitness.
5. Remove the λ worst individuals.
6. Replace the λ removed individuals with copies of the µ remaining individuals.

The newly made copies are called the offspring. If µ = λ , each individual in the
elite is copied once; otherwise, it could be copied fewer or more times.

7. Mutate the λ offspring, i.e. perturb them randomly. The most suitable mutation
operator depends on the representation and to some extent on the fitness land-
scape. If the representation is a vector of real numbers, an effective mutation
operator is Gaussian mutation: add random numbers drawn from a Gaussian dis-
tribution with a small standard deviation to all numbers in the vector.

8. If the population contains an individual of sufficient quality, or the maximum
number of generations is reached, stop. Otherwise, go to step 2 (i.e. start the next
generation).

Despite the simplicity of this algorithm (it can be implemented in 10–20 lines of
code), the µ +λ ES can be remarkably effective; even degenerate versions such as
the 1+ 1 ES can work well. However, the evolution strategy is just one of several
types of evolutionary algorithms; another commonly used type is the genetic al-
gorithm, which relies more on recombination and less on mutation, and which uses
different selection mechanisms. There are also several types of stochastic search/op-
timisation algorithms that are not strictly speaking evolutionary algorithms but can
be used for the same purpose, e.g. swarm intelligence algorithms such as particle
swarm optimisation and ant colony optimisation. A good overview of evolutionary
algorithms and some related approaches can be found in Eiben and Smith’s book [8].

Some evolutionary algorithms are especially well suited to particular types of
representation. For example, numerous variations on evolutionary algorithms have
been developed especially for evolving runnable computer programs, often repre-
sented as expression trees [18]. If the artefacts are represented as vectors of real
numbers of relatively short length (low dimensionality), a particularly effective al-
gorithm is the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), for
which several open source implementations are available [9].

In many cases we want to use more than one evaluation function, as it is hard
to capture all aspects of an artefact’s quality in one number. In a standard single-
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objective evolutionary algorithm such as the evolution strategy, the evaluation func-
tions could be combined as a weighted sum. However, this comes with its own set
of problems, particularly that some functions tend to be optimised at the expense
of others. Instead, one could use a multiobjective evolutionary algorithm, that op-
timises for several objectives at the same time and finds the set of nondominated
individuals which have unique combinations of strengths. The most popular multi-
objective evolutionary algorithm is perhaps the NSGA-II [7].

2.2.1 Other types of search algorithms

It could be argued that an evolutionary algorithm is “overkill” for some content gen-
eration problems. If your search space is very small and/or you have lots of time at
hand to produce your content, you could try an exhaustive search algorithm that
simply iterates through all possible configurations. In other cases, when it is easy to
find good solutions and it is more important to maintain high diversity in the gener-
ated content, random search—simply sampling random points in the search space—
could work well. Even when using exhaustive or random search the content needs
to be represented in such a way that the space can be effectively searched/sampled
and an evaluation function is necessary to tell the bad content from the good.

Another approach to content generation that can also be seen as search in content
space is the solver-based approach, where e.g. Answer Set Programming is used to
specify the logical conditions on game content. That approach will be discussed in
Chapter 8.

2.3 Content representation

Content representation is a very important issue when evolving game content. The
representation chosen plays an important role in the efficiency of the generation
algorithm and the space of content the method will be able to cover. In evolutionary
algorithms, the solutions in the generation space are usually encoded as genotypes,
which are used for efficient searching and evaluation. Genotypes are later converted
into phenotypes, the actual entities being evolved. In a game content generation
scenario, the genotype might be the instructions for creating a game level, and the
phenotype is the actual game level.

Examples of content representation in the game domain include the work done by
Togelius et al. [26] who used an indirect representation to evolve maps for the real-
time strategy game StarCraft [1]. In this experiment, the genotypes of maps were
simply arrays of real numbers, whereas the phenotypes were complete StarCraft
maps including passable/impassable areas, positions of bases and resources, etc.
This experiment will be discussed in more detail in Section 2.5.
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Fig. 2.1: A track evolved based on sequences of Bézier curves. Adapted from [24]

In another game genre, Cardamone et al. [4] evolved tracks for a car racing game.
The tracks were represented as a set of control points the track has to cover and
Bézier curves were employed to connect these points and ensure smoothness, a
method inspired by the work done by Togelius et al. [24] on the same game genre.
An example track evolved following this method is presented in Figure 2.1. This
work will be discussed further in Section 2.6

As a concrete example of different representations, a level in Super Mario Bros.
might be represented in any of the following ways.

1. Directly, as a level map, where each variable in the genotype corresponds to one
“block” in the phenotype (e.g. bricks, question mark blocks, etc.).

2. More indirectly, as a list of the positions and properties of the different game
entities such as enemies, platforms, gaps and hills (an example of this can be
found in [19]).

3. Even more indirectly, as a repository of different reusable patterns (such as col-
lections of coins or hills), and a list of how they are distributed (with various
transforms such as rotation and scaling) across the level map (an example of this
can be found in [23]).

4. Very indirectly, as a list of desirable properties such as number of gaps, enemies,
coins, width of gaps, etc. (an example of this can be found in [20]).

5. Most indirectly, as a random number seed.

These representations yield very different search spaces. It’s easy to think that the
best representation would be the most direct one, which gives the evolutionary pro-
cess most control over the phenotype. One should be aware, however, of the “curse
of dimensionality” associated with representations that yield large search spaces:
the larger the search space, the harder it is (in general) to find a certain solution. An-
other useful principle is that the representation should have a high locality, meaning
that a small change to the genotype should on average result in a small change to
the phenotype and a small change to the fitness value. In that sense, the last repre-
sentation is unsuitable for search-based PCG because there is no locality, in which
case all search methods perform as badly (or as well) as random search.
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The choice of proper representation depends on the type of problem one is trying
to solve. In the work done by Shaker et al. [20], the levels of Infinite Mario Bros.
[17], a public clone of the popular game Super Mario Bros. [14], are represented
according to option 4 as a vector of integers; each level is parametrized by four se-
lected content features with the intention of finding the best combination of these
features that can be used to generate content that optimises a specific player’s expe-
rience. In a later study by the same authors [19], a more expressive representation
is used following option 2, in which the structure of the levels of the same game
is described in a design grammar that specifies the type, position, and properties of
each item to be placed in the level map. Grammatical evolution is then applied to the
design grammar in order to evolve new level designs [15]. A set of design elements,
following option 3, was proposed in [23], also on the same game, where levels were
described as a list of design elements placed in 2D maps; in this study a standard
genetic algorithm was used to evolve content.

An issue closely related to the representation on the direct–indirect continuum is
the expressive range of the chosen representation. The expressive range is relative
to a particular measure of it: one could measure the expressivity of a platform game
level generator in terms of how many different configurations of blocks it could
produce, but it would make more sense to measure some quality that is more relevant
to the experience of playing the game as a human. For example, the four-feature
vector representation used to represent Infinite Mario Bros. levels allows control of
the generation over only the four dimensions chosen, and consequently the search
space is bounded by the range of these four features. On the other hand, a generator
with a wider expressive range was built when representing the possible level designs
in a design grammar which imposes fewer constraints on the structures evolved.

Chapter 9 further discusses the issue of representation in search-based PCG, and
gives additional examples of representations tailored to particular content generation
needs.

2.4 Evaluation functions

Candidate solutions, encoded in a represention, are evaluated by an evaluation func-
tion, which assigns a score (a fitness value or evaluation value) to each candidate.
This is essential for the search process; if we do not have a good evaluation function,
the evolutionary process will not work as intended and will not find good content. In
general, the evaluation function should be designed to model some desirable quality
of the artefact, e.g. its playability, regularity, entertainment value, etc. The design of
an evaluation function depends to a great extent on the designer and what she thinks
are the important aspects that should be optimised and how to formulate that.

For example, there are many studies on evolving game content that is “fun” [25,
24, 20, 4]. This term, however, is not well defined, and is hard to measure and
formalise. This problem has been approached by many authors from different per-
spectives. In some studies, fun is considered a function of player behaviour and is
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measured accordingly. An example of such a method can be found in the work done
by Togelius et al. [25] for evolving entertaining car racing tracks. In this study, in-
dicators of player performance, such as the average speed achieved, were used as
a measure of the suitability of each evolved track for individual players. In another
study by Shaker et al. [20], fun is measured through self reports by directly ask-
ing the players about their experience. In other studies [22], a game is considered
fun if the content presented follows predefined patterns that specify regions in the
game and alternate between segments of varying challenge. In this case, challenge
is considered the primary cause of a fun experience.

In search-based PCG, we can distinguish between three classes of evaluation
functions: direct, simulation-based, and interactive.

2.4.1 Direct evaluation functions

Direct evaluation functions map features extracted from the generated content to a
content quality value and, in that sense, they base their fitness calculations directly
on the phenotype representation of the content. Direct evaluation functions are fast
to compute and often relatively easy to implement, but it is sometimes hard to devise
a direct evaluation function for some aspects of game content. Example features
include the placement of bases and resources in real-time strategy games [26] or
the size of the ruleset in strategy games [12]. The mapping between features and
fitness might be contingent on a model of the playing style, preferences or affective
state of players. An example of this form of fitness is the study done by Shaker et
al. [20, 21] for personalising player experience using models of players to give a
measure of content quality.

Within direct evaluation functions, two major types are theory-driven and data-
driven functions. Theory-driven functions are guided by intuition and/or qualitative
theories of player experience. Togelius et al. [24] used this method to evaluate the
tracks in a car racing game. The evaluation function derived is based on several
theoretical studies of fun in games [6, 11] combined with the authors’ intuition of
what makes an entertraining track. Data-driven functions, on the other hand, are
based on quantitative measures of player experience that approximate the mapping
between the content presented and players’ affective or cognitive states collected
via questionnaires or physiological measurements [21, 31].

2.4.2 Simulation-based evaluation functions

Simulation-based evaluation functions use AI agents that play through the content
generated and estimate its quality. Statistics are usually calculated about the agents’
behaviour and playing style and used to score game content. The type of the evalu-
ation task determines the area of proficiency of the AI agent. If content is evaluated
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on the basis of playability, e.g. the existence of a path from the start to the end in a
maze or a level in a 2D platform game, then AI agents should be designed that excel
in reaching the end of the game. On the other hand, if content is optimised to max-
imise particular player experience, then an AI agent that imitates human behaviour
is usually adopted. An example study that implements a human-like agent for as-
sessing content quality is presented in [24] where neural-network-based controllers
are trained to drive like human players in a car racing game and then used to eval-
uate the generated tracks. Each track generated is given a fitness value according to
playing-behaviour statistics calculated while the AI controller is playing. Another
example of a simulation-based evaluation function is measuring the average fighting
time of bots in a first-person shooter game [5].

An important distinction within simulation-based evaluation functions is between
static and dynamic functions. Static evaluation functions assume that the agent be-
haviour is maintained during gameplay. A dynamic evaluation function, on the other
hand, uses an agent that adapts during gameplay. In such agents, the fitness value
can be dependent on learnability: how well and/or fast the agent learns to play the
content that is being evaluated.

2.4.3 Interactive evaluation functions

Interactive functions evaluate content based on interaction with a human, so they re-
quire a human “in the loop”. Examples of this method can be found in the work done
by Hastings et al. [10], who implemented this approach by evaluating the quality of
the personalised weapons evolved implicitly based on how often and how long the
player chooses to use these weapons. Cardamone et al. [4] also used this form of
evaluation to score racing tracks according to the users’ reported preferences. The
first case is an example of an implicit collection of data while players’ preferences
were collected explicitly in the second. The problem with explicit data collection
is that, if not well integrated, it requires the gameplay session to be interrupted.
This method however provides a reliable and accurate estimator of player expe-
rience, as opposed to implicit data collection, which is usually noisy and based on
assumptions. Hybrid approaches are sometimes employed to mitigate the drawbacks
of these two methods by collecting information across multiple modalities such as
combining player behaviour with eye gaze and/or skin conductance. Example stud-
ies that use this approach can be found in [13, 21, 31].

2.5 Example: StarCraft maps

In two recent papers, Togelius et al. presented a search-based approach to generating
maps for the classic real-time strategy game (RTS) StarCraft [26, 27]. Despite being
released in the previous millennium, this game is still widely played and was until
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recently the focus of large tournaments broadcast on national TV in countries such
as South Korea. The focus of the game is on building bases, collecting resources, and
waging war with armies of units built using these bases. The maps of the game play a
crucial role, as they constrain what strategies are possible through their distribution
of paths, obstacles, resources, etc. Given the competitive nature of the game, it is
very important that the maps are fair. Therefore, evaluation functions were designed
to measure the fairness of the maps as well as their affordances for interesting and
diverse strategies.

Representation: The maps are represented as vectors of real numbers (of around
100 dimensions). In the genotype-to-phenotype process, some of these numbers are
interpreted directly as the positions of resources or base starting locations. Other
numbers are interpreted as starting positions and parameters for a turtle-graphics-
like procedure that “draws” impassable regions (walls, rocks, etc.) on the initially
empty map. The result of the transformation is a two-dimensional array where each
cell corresponds to a block in the StarCraft map format; this can then be automati-
cally converted into a valid StarCraft map.

Evaluation: Eight different evaluation functions were developed that address
base placement, resource placement and paths between bases. These evaluation
functions are based mostly on calculations of free space in different areas of the
map and on the shortest paths between different points as calculated by the A* al-
gorithm, and the functions are thus direct (though, if you see the path calculations
as abstract simulations of unit behaviour in the game, the functions can be seen as
simulation-based). There are functions for evaluating whether bases are sufficiently
fair from each other, whether there is enough space to grow a base, and whether
there is equal access to nearby resources. One particularly complicated function is
the choke-point function, which returns a higher value if the shortest path between
two bases has a choke point, a narrow area a tactically skilled player can use to
defend against superior attacking forces by using level geometry.

Algorithm: Given the number of evaluation functions, it seemed very compli-
cated to combine all of them into a single objective. SMS-EMOA, a state-of-the-art
multiobjective evolutionary algorithm, was therefore used to evolve combinations
of two or three objectives (some additional objectives were also converted to con-
straints). It was found that there are partial conflicts between several objectives,
meaning that it is impossible to find a map that maximises all of them, but certain
combinations of objectives yield interesting and reasonably fair maps.

2.6 Example: Racing tracks

Togelius et al. evolved racing tracks to fit particular players’ playing styles in a
simple two-dimensional racing game [24]. This particular game had already been
used for a series of experiments investigating how evolutionary algorithms could
best be used to create neural networks that could play the game well, when the
authors decided to see whether the same technique could be applied to evolve the
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tracks the car was racing on. The reasoning was that creating challenging opponent
drivers for commercial racing games is actually quite easy, especially if you are
allowed to “cheat” by giving the computer-controlled cars superior performance
(and who would stop you?)—on the other hand, creating an interesting racing track
is not trivial at all.

Representation: The tracks are represented as vectors of real numbers, which
are interpreted as control points for b-splines, i.e. sequences of Bézier curves.

Evaluation: The tracks are meant to be personalised for individual players.
Therefore, the first stage in evolving a track for a given player is to model the playing
style of that player. This is done by teaching a neural network (via another evolu-
tionary process) to drive like that player. Then a candidate track is evaluated in a
simulation-based manner by letting the neural network driver drive on that track in
lieu of the human player and investigate its performance. This information is used by
three different evaluation functions that measure whether the track has appropriate
challenge and diversity for the player.

Algorithm: Given that there are three different evaluation functions, there re-
mains the problem of combining them. The algorithm used, cascading elitism, is
similar to µ +λ ES but has several stages of selection to ensure appropriate selec-
tion pressure on all objectives.

2.7 Example: Board game rules

Browne and Maire demonstrated that it is possible to automatically generate com-
plete board games of such quality that they can be sold as commercial products [3].
The system described, Ludi, is restricted to simple board games similar to Go, Oth-
ello and Connect Four, but does a remarkable job of exploring this search space.
This example will be discussed further in Chapter 6.

Representation: The board games, including board layouts and rules, were rep-
resented as strings (which can be interpreted as expression trees) in a special-
purpose game description language. This is a relatively high-level language, de-
scribing entire games in just a few lines.

Evaluation: The games were evaluated by playing them with a version of the
minimax game-tree search algorithm, with an evaluation function that had been au-
tomatically tuned for each game. A number of values were extracted from the per-
formance of the algorithm on the game, e.g. how long it took to finish the game,
how often the game ended in a draw, how many of the rules were used etc. These
values were combined using a weighted sum based on empirical investigations of
the properties of successful board games.

Algorithm: A relatively standard genetic algorithm was used.
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2.8 Example: Galactic Arms Race

Galactic Arms Race (GAR) is a space shooter video game where the player traverses
the space in a space ship, shoots enemies, collects items and upgrades their ship. The
game was first released in 2010 as a free research game and a commercial version of
the game was released in 2012. The game is interesting from a research perspective
because it incorporates online automatic personalised content generation in a well-
chosen playable context. The main innovation of the game is in personalising the
weapons used by the player through evolution. As the game is played, new particle
weapons are automatically generated based on player behaviour.

Representation: Particle system weapons are controlled by neural networks
evolved by a method called NeuroEvolution of Augmenting Topologies (NEAT) [10].
NEAT evolves the networks through complexification, meaning that it starts with
a population of simple, small networks, and increases the complexity of network
topologies over generations. Each weapon in the game is represented as a single
network that controls the motion (velocity) and appearance (colour) of the particles
given the particle’s current position in the space. The evolution starts with a set of
simple weapons that shoot only in a straight line.

Evaluation: During the game, a fitness value is assigned to each weapon based
on how much the particular weapon is used by the player; weapons used by the
player more often are assigned higher fitness values, and thus have higher probabil-
ity of being evolved. The newly evolved weapons are then spawned into space for
the player to pick up.

Algorithm: The whole game thus represents a collective, distributed evolution-
ary algorithm. This process allows the generation of unique weapons for each player,
increasingly personalised as they play the game.

2.9 Lab exercise: Evolve a dungeon

Roguelike games are a type of games that use PCG for level generation; in fact,
the runtime generation and thereafter the infinite supply of levels is a key feature of
this genre. As in the original game Rogue from 1980, a roguelike typically lets you
control an agent in a labyrinthine dungeon, collecting treasures, fighting monsters
and levelling up. A level in such a game thus consists of rooms of different sizes
containing monsters and items and connected by corridors. There are a number of
standard constructive algorithms for generating roguelike dungeons [16], such as:

• Create the rooms first and then connect them by corridors; or
• Use maze generation methods to create the corridors and then connect adjacent

sections to create rooms.

The purpose of this exercise is to allow you to understand the search-based ap-
proach through implementing a search-based dungeon generator. Your generator
should evolve playable dungeons for an imaginary roguelike. The phenotype of the
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dungeons should be 2D matrices (e.g. size 50× 50) where each cell is one of the
following: free space, wall, starting point, exit, monster, treasure. It is up to you
whether to add other possible types of cell content, such as traps, teleporters, doors,
keys, or different types of treasures and monsters. One of your tasks is to explore
different content representations and quality measures in the context of dungeon
generation. Possible content representations include [28]:

• A grid of cells that can contain one of the different items including: walls, items,
monsters, free spaces and doors;

• A list of walls with their properties including their position, length and orienta-
tion;

• A list of different reusable patterns of walls and free space, and a list of how they
are distributed across the grid;

• A list of desirable properties (number of rooms, doors, monsters, length of paths
and branching factor); or

• A random number seed.

There are a number of advantages and disadvantages to each of these representa-
tions. In the first representation, for example, a grid of size 100×100 would need to
be encoded as a vector of length 10,000, which is more than many search algorithms
can effectively handle. The last option, on the other hand, explores one-dimensional
space but it has no locality.

Content quality can be measured directly by counting the number of unreachable
rooms or undesired properties such as a corridor connected to a corner in a room or
a room connected to too many corridors.

2.10 Summary

In search-based PCG, evolutionary computation or other stochastic search/optimisa-
tion algorithms are used to create game content. The content creation can be seen as
a search for the content that best satisfies an evaluation function in a content space.
When designing a search-based PCG solution, the two main issues are the content
representation and the evaluation function. The same space of content phenotypes
can be represented in several different ways in genotype space; in general, we can
talk about the continuum from direct representations (where genotypes are similar
to phenotypes) to indirect representations (where genotypes are much smaller than
phenotypes). Indirect representations yield less control and potentially sparser cov-
erage of content space, but often cope better with the curse of dimensionality. There
are three types of evaluation functions: direct, simulation-based, and interactive. Di-
rect evaluation functions are fast, simulation-based evaluation functions require an
AI to play through part of the game and interactive evaluation functions require a
human in the loop. Search-based PCG is currently very popular in academia and
there are multiple published studies; a few complete games have been released in-
corporating this approach to PCG.
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